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Abstract—A newly designed robust Ru(salen)(CO) complex 3 was found to catalyze asymmetric aziridination using azide com-
pounds carrying p-nitrobenzenesulfonyl and 2-(trimethylsilyl)ethanesulfonyl (SES) groups, which are easily removable N-protecting
groups under mild conditions, as a nitrene precursor in a highly enantioselective manner. In particular, the reactions with SES azide
showed excellent enantioselectivity greater than 90% ee, except for one example.
� 2006 Elsevier Ltd. All rights reserved.
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1 (2 mol%), R = p-CH3C6H4: 87% ee, 71% (TON = 36)
2 (0.09 mol%),  R = p-CH3C6H4: 85% ee, 78% (TON = 867)
2 (1 mol%),  R = p-O2NC6H4: 84% ee, 34% (TON = 34)
3 (0.1 mol%),  R = p-CH3C6H4: 86% ee, 93% (TON = 982)

1: Ar = Ph
2: Ar = 3,5-F2-4-CH3C6H2
3: Ar = 3,5-Cl2-4-(CH3)3SiC6H2
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Achievement of high selectivity and mild reaction condi-
tions as well as realization of environmental benignity
and high atom economy is a key issue in current chem-
ical transformation. Since most organic compounds car-
ry nitrogen functional group(s), C–N bond formation is
a very important transformation for organic synthesis.
Of many C–N bond formations, aziridination is extre-
mely important, because aziridines, especially N-sul-
fonylated ones, undergo various nucleophilic ring-open-
ing reactions due to their high reactivity and serve as
potent synthetic intermediates for nitrogen-containing
compounds.1 Thus, much effort has been devoted to-
ward the development of asymmetric aziridination with
nitrene precursors possessing N-arylsulfonyl group and
many highly enantioselective reactions have been
reported to date.2 However, most of them use N-aryl-
sulfonyliminophenyliodinanes as the nitrene precursor
and the atom economics and ecological benignity of
those reactions remain at an unsatisfactory level,
because a stoichiometric amount of iodobenzene was
inevitably produced as the waste co-product.3 Taking
into consideration the above problems, aziridination
using arylsulfonyl azides as precursor has been continu-
ously studied, because it generates innocuous nitrogen
as the only side product.4 Although asymmetric aziridin-
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ation using the azide compound in the presence of a cop-
per or rhodium complex had also been reported, it needs
UV irradiation to decompose the azide compound and it
is modestly enantioselective.5 We recently found that
Ru(salen)(CO) complex 1 catalyzed asymmetric imida-
tion of sulfides6a,b and aziridination6c using azide com-
pounds without UV irradiation at room temperature
in a highly enantioselective manner, but the turnover
number (TON) of the catalyst in the aziridination of
styrene was moderate (Scheme 1). The insufficient
Ar Ar
(aR)

3'3

Scheme 1.
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TON was attributed to an undesired intramolecular C–
H insertion reaction of an intermediary azide–Ru spe-
cies, in which the phenyl substituent of the C3- or C3 0-
naphthyl group was aminated to give a catalytically
inactive species.7 This knowledge prompted us to syn-
thesize catalyst 2 that has a 3,5-difluoro-4-methylphenyl
substituent instead of the phenyl substituent.8 The TON
of 2 in aziridination amounted to 867, when p-toluene-
sulfonyl azide (TsN3) was used as the precursor. How-
ever, removal of the N-protecting simple arylsulfonyl
group needs harsh conditions. This diminishes the utility
of this aziridination. On the other hand, it has been
reported that N-p-nitro- and o-nitro-benzenesulfonyl
(o- and p-Ns)9 and 2-(trimethylsilyl)ethanesulfonyl
(SES)10 groups can be removed under mild conditions.
Complex 2 also catalyzed aziridination using p-nitro-
benzenesulfonyl azide with high enantioselectivity, but
OMOM
I a, b

OMOM
Ar

5: Ar = 3,5-Cl2-4-(CH3)3SiC6H24

OH
Ar

CHO
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Scheme 2. Reagents and conditions: (a) Pd(PPh3)4 (5 mol %), 3,5-
dichlorobenzeneboronic acid, toluene, 1 M Na2CO3, 100 �C, 92%; (b)
sec-BuLi, THF, �78 �C, then (CH3)3SiCl, 64%; (c) n-BuLi, N,N,N 0,N 0-
tetramethylethylenediamine, �78 �C, then DMF, 84%; (d) HCl/
i-PrOH (20 w/w%), THF, 99%; (e) (1R,2R)-1,2-diaminocyclohexane
sulfate, K2CO3, EtOH, 95%; (f) Ru3(CO)12, EtOH, reflux, 62%.

Table 1. Asymmetric aziridination of various olefins with p-NsN3, o-NsN3,

Entry Azide Catalyst/mol % R or substrate

1 p-NsN3 0.1 Ph
2 p-NsN3 1 Ph
3 p-NsN3 1 4-BrC6H4

4 p-NsN3 1 PhC„CA
5 p-NsN3 2 1-Octene
6 o-NsN3 0.1 Ph
7 o-NsN3 1 Ph
8 o-NsN3 1 PhC„CA
9 SESN3 0.1 Ph
10 SESN3 1 Ph
11 SESN3 1 Ph
12 SESN3 1 4-BrC6H4

13 SESN3 1 PhC„CA
14 SESN3 5 1-Octene
15 SESN3 5 Indene

a Isolated yield after silica gel chromatography, unless otherwise mentioned.
b Determined by HPLC analysis.
c Calculated according to 1H NMR analysis.
d Determined by chiral HPLC analysis after the conversion into 2-naphthyls
its TONwasmoderate (36) (Scheme 1). Though themech-
anism of degradation of 2was unclear, we speculated that
the o-carbon or p-methyl group might be aminated.
Therefore, we expected that a more robust catalyst could
be constructed, if the two positions are somehow pro-
tected from the amination. Based on this idea, we at-
tempted introducing a pentafluorophenyl group instead
of the phenyl substituent. However, the desired complex
could not be synthesized. Thus, we synthesized a new
complex 3 that possessed a phenyl substituent bearing
chloro and trimethylsilyl groups at itsm- and p-positions,
respectively. A bulky chloro substituent was expected to
block its o-hydrogen atommore efficiently than the fluoro
substituent. Aldehyde 6, which was necessary for the syn-
thesis of 3, was prepared from (aR)-iodobinaphthyl 4 in
four steps: (i) Suzuki–Miyaura coupling, (ii) trimethyl-
silylation, (iii) o-directed formylation, and (iv) deprotec-
tion (Scheme 2).8 Condensation of 6 with (1R,2R)-1,2-
cyclohexanediamine sulfate in the presence of K2CO3

and the treatment of the resulting salen ligand with
Ru3(CO)12 in ethanol yielded complex 3.

With 3 in hand, we first examined aziridination of sty-
rene using TsN3 at room temperature to evaluate its
robustness (Scheme 1). The reaction proceeded with
enantioselectivity of 86% ee similar to those obtained
with 1 or 2 and the TON of 3 amounted to 982.

Encouraged by this result, we next examined aziridin-
ation of styrene with p-Ns azide in the presence of
0.1 mol % of complex 3. To our delight, TON of 3 was
found to be as large as 746 together with good enantio-
selectivity of 81% ee (Table 1, entry 1). The reaction with
1 mol % of 3 at 0 �C showed somewhat better enantio-
selectivity at the expense of TON, though it was still
as high as 97 (entry 2). Aziridination of other terminal
conjugated olefins also proceeded with high enantiose-
lectivity (entries 3 and 4). However, the reaction of
non-conjugated 1-octene was sluggish at 0 �C and slow
even at elevated temperature, and the enantioselectivity
was moderate (entry 5). We also examined aziridination
or SESN3 catalyzed by Ru(salen)(CO) 3

Temp/�C Time/h Yield/%a % eeb TONc

rt 38 70 81 746
0 12 90 87 97
0 12 93 83 94
0 12 98 98 99
Reflux 38 32c 56 16
rt 12 62 73 660
0 12 60 81 68
rt 12 58 87 59
rt 12 26 91 260
rt 12 100 90 —
0 12 99 92 99
0 12 76 92 98
0 12 50 >99 51
Reflux 38 28c 77d 6
Reflux 38 47 98 26

ulfide derivative (Ref. 13).
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with o-Ns azide. It was found that this azide was less
reactive and the reaction with it was somewhat less
selective than that with p-Ns azide (entries 6–8).

Subsequently to this, we examined aziridination using
SES azide with expectation that the reaction with this
azide would show different stereochemistry from that
with o- or p-Ns azide, because alkyl- and aryl-sulfonyl
groups were considered to interact with the salen ligand
differently from each other.11 Fortunately, complex 3
was found to catalyze aziridination using SES azide as
efficiently as the reaction with o- or p-Ns azide. Further-
more, enantioselectivity was improved to some extent,
as compared with the reaction with o- or p-Ns azide
(entries 9–11).12 It should be noted that complexes 1
and 2 were less efficient also for the aziridination with
SES azide: reactions of styrene in the presence of
1 mol % of complex 1 or 2 at room temperature for
12 h afforded the corresponding SES-protected aziridine
in 10% yield (TON = 10) with 89% ee or in 67% yield
(TON = 67) with 88% ee, respectively. The reactions
of other terminal conjugated olefins with SES azide also
proceeded with high enantioselectivity (entries 12 and
13). The aziridination of 1-octene was slow even at ele-
vated temperature, but it showed good enantioselectivity
of 77% ee (entry 14). The reaction of indene proceeded
with excellent selectivity, albeit with moderate TON (en-
try 15). The N-SES group can be deprotected under mild
conditions and it has been reported that chiral N-SES-
protecting aziridines can be converted to the corre-
sponding aziridines without diminishing their enantio-
meric purity.3g

In conclusion, we were able to achieve highly enantio-
selective aziridination using 2-(trimethylsilyl)ethanesul-
fonyl azide as the nitrene precursor with reasonably
designed Ru(salen)(CO) complex 3 as catalyst. Since the
N-SES group can be readily removed, the present reaction
provides a useful method not only for synthesizing
N-sulfonylated aziridines but also for preparing non-N-
protected ones under mild conditions.
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